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As part of an effort to validate call center performance models we address some technical issues to be able to
perform this validation, especially the role of noise and the way to eliminate forecasting errors. We also give the
main results of the validation study.
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1. Introduction
Many models to predict call center performance exist in the literature (see, e.g., Gans et al. (2003)),
but little is known about their accuracy. This study tries to fill this gap by comparing different
simulation models to the realized performance of one particular call center. The models differ in a
number of ways, especially in the way arrivals, patience, agent heterogeneity, and breaks are mod-
eled. We would like to identify the model that minimizes the mean absolute error (MAE) between
the predicted and realized service level.

We focus on daily performance measures. There are a number of problems with comparing daily
realized performance and the outcome of simulation models. The source of these problems is that
every day is different: we do not have i.i.d. replications of the same day as is usually the case (see,
e.g., Kleijnen (1995)). The issues we tackle are:
- eliminating the system noise. Even an exact model would not have error 0, because of random
fluctuations during the day. Note that this noise is substantial, even at the daily level, as shown in
Roubos et al. (2012). Therefore we would like to make a distinction between that part of the error
that is due to noise and that part that is due to the imperfectness of the model, the model error;
- eliminating the forecasting error. No forecast is exact. To focus on the model error and eliminate
the forecasting error we would like to use the actual rate of the inhomogeneous Poisson arrival
process. However, this rate is unknown, therefore we use the actual instead. Unfortunately this
creates an error by itself, because service level and actuals are negatively correlated, the actuals
give more information than we are allowed to use. Therefore we have to find a way to eliminate this
cheating error.

The contribution of this study is twofold: we develop theory on how to validate service models
(Section 2) and we obtain insights in which features are crucial to model in call centers (Section 3).
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2. Validating inhomogeneous models
Let us formulate our model mathematically. The r.v. Λ represents the parameters that change from
day to day, which are the rate of the non-homogeneous Poisson process and the agents that are
scheduled and their shifts. The performance, typically the service level obtained during a day, is
denoted by X . Because X depends on Λ we write X(Λ). Note that X is a r.v., even for fixed Λ= λ:
its value depends on the realization of the Poisson process, the handling times, times at which agents
take breaks, etc. We can also simulate various models. The service level estimation given by the
simulation is written as S(Λ). However, the arrival rate is not observed. We could replace that part
of Λ by a forecast, but they are usually quite bad. Instead, we use use the actual instead of the rates.
Λ in which the rates are replaced by the random realizations of the arrivals is written as A(Λ), the
corresponding simulation S(A(Λ)).

With E• we indicate the expectation with respect to the corresponding r.v. For example,
ESS(A(Λ)) is the expected simulated performance of a random day for a random realization of the
rates; EΛX(Λ) is the random performance “averaged” over the days. Note that we can interchange
expectations, e.g., EXEΛX(Λ) =EΛEXX(Λ).

We are interested in estimating EΛ|EXX(Λ)−ESS(Λ)|, which corresponds to the mean abso-
lute error (MAE) of the service level. However, we measure X(Λ) and ESS(A(Λ)), the latter by
averaging over a sufficiently high number of simulations. We will show how to get an estimate of
the MAE based on the actuals and simulations.

We can show that

ESS(A(Λ))−X(Λ)≈ESS(A
2(Λ))−S(A(Λ))+ESS(Λ)−EXX(Λ), (1)

where A2 means taking a sample twice. The partESS(A
2(Λ))−S(A(Λ)) approximates the model

noise and the cheating error, and can be obtained only using simulations. The remainder is what we
measure.

Simulations show that ESS(A
2(Λ)) − S(A(Λ)) is approximately normally distributed with

a mean equal to 0.4% and a standard deviation of 3.7%. Its MAE is EΛ,A

∣∣ESS(A
2(Λ)) −

S(A(Λ))
∣∣= 3%.

Our goal is to compute the MAE of ESS(Λ)−EXX(Λ), EΛ

∣∣ESS(Λ)−EXX(Λ)
∣∣. We cannot

simply subtract 3% from EΛ

∣∣ESS(A(Λ))−X(Λ)
∣∣. To get a better understanding we start with

computing the first two moments of the model error. Our simulations show EΛ,A

(
ESS(A(Λ))−

X(Λ)
)
= 3.9% and σΛ,A

(
ESS(A(Λ))−X(Λ)

)
= 5%.

The first moment of the model error follows directly by taking expectations in Equation (1):

µ :=EΛ

(
ESS(Λ)−EXX(Λ)

)
= 3.5%.

This value is of interest in itself: it tells us to which extend the model is biased, to which extent there
is a systematic error. But even if µ is small, the errors can be big but fluctuating, sometimes positive,
sometimes negative. That is why we defined the performance measure asEΛ

∣∣ESS(Λ)−EXX(Λ)
∣∣.

Next we compute the standard deviation of the model error. As we expect ESS(A
2(Λ)) −

S(A(Λ)) to be independent of the model error, we have

σ2 := σ2
Λ,A

(
ESS(Λ)−EXX(Λ)

)
≈

σ2
Λ,A

(
ESS(A(Λ))−X(Λ)

)
−σ2

Λ,A

(
ESS(A

2(Λ))−S(A(Λ))
)
.
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In our case σ=
√

(0.052− 0.0372) = 3.4%. We conclude that the first moments of the model error
and will also be quite similar to the measured error.

We can go a step further if we assume the measurements to be normally distributed. For the
simulated noise/cheating factor this is the case, for the measured error this is a rough approximation.
For ESS(Λ)−EXX(Λ)∼N(0.035,0.034), using a straightforward calculation, we find

EΛ

∣∣ESS(Λ)−EXX(Λ)
∣∣≈ 2σ√

2π
e−

1

2
(µ

σ
)2 +µ

(
2Φ

(µ
σ

)
− 1

)
= 4.0%,

with Φ the standard normal distribution function. Note that the MAE without the correction is
EΛ,A

∣∣ESS(A(Λ))−X(Λ)
∣∣= 4.5%. We conclude that the added precision given by the correction

is small compared to the measured error, around 10%.
The results of this section are derived for the “HT & Patience Model”, one of the models we

analyzed. Other models give similar results. Note that even the best model will give a non-zero mea-
sured error. The lower bound to the measured error is approximated by ESS(A

2(Λ))− S(A(Λ)).
Its MAE is 3%.

3. Validation results
We did an extensive data analysis of a call center of which we had data about the calls and the
agents: who did which calls, but also when agents where available to take calls, when they took
breaks, etc. Based on this analysis we compared several models each having a different set of
features. The most important ones are:
- Handling times: can be taken empirical or exponential;
- Average handling times: the averages can be taken all the same or weighted based on the mix of
agents available that day;
- Patience: empirical or exponential;
- Breaks: are yes or no taken into account, proportional to the length of the breaks.

We find that all models overestimate the SL. The best one in terms of the MAE is the model with
handling times exponential, AHTs adapted to the agent mix, empirical patience, and breaks taken
into account. The MAE is ≈ 3%, for a SL that is usually around 80%. The worst models are the
ones that have a yearly overall AHT and do not take breaks into account. Although it looks evident,
these two features are often not taken into account.
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