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This paper proposes the application of a stochastic model for single-buffer systems with restart level and state-
dependent transition probabilities to a Battery Energy Storage System (BESS) in a smart grid. The model represents
the charging and discharging processes of a BESS, taking into account the uncertainty in renewable generation and
load demand. BESS is treated as a buffer between the upstream renewable source and the downstream load, with
state-dependent charging and discharging efficiencies and a specific restart level which controls the input energy
flow and, consequently, the system performance. The model is solved analytically using an isolation technique,
allowing the derivation of a closed-form solution for the probability distribution of the system states.
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1. Introduction
The increasing penetration of renewable energy sources in modern power systems has led to new
challenges in terms of grid stability and energy management (Zhao et al. 2012). The intermittent
and unpredictable nature of solar and wind generation requires the adoption of flexible resources,
such as energy storage systems, to balance supply and demand in real time (Fernandez-Blanco et al.
2017). In this context, the management of Battery Energy Storage Systems (BESS) has become
a crucial task, complicated by the inherent uncertainty in renewable generation and load demand,
making precise scheduling of charging and discharging cycles difficult (Ghiassi-Farrokhfal et al.
2016). Several approaches have been proposed in the literature to address this problem, ranging
from deterministic optimization methods (Wu et al. 2014) to stochastic dynamic programming
(Zhang et al. 2013). However, most of these techniques rely on simplified battery models and do
not fully capture the complex dynamics of the storage process, such as the dependence of charging
and discharging efficiencies on the state of charge (SOC) (Rao et al. 2005).

In this paper, we propose a stochastic model for the BESS that accounts for uncertainty in renew-
able generation and load demand. The proposed model represents the charging and discharging
processes of the BESS as a buffer between the upstream renewable source and the downstream
load, with state-dependent charging and discharging efficiencies. A key feature of the model is the
inclusion of a restart level, which serves to control the input energy flow. By setting a minimum
state of charge threshold for the battery to start charging again, the model aims to reduce the proba-
bility of charging the BESS with low efficiency values, thus increasing the overall system efficiency



Mosè Gallo et al.: A Preliminary Investigation on Bernoulli Models for Battery Energy Storage Systems with State-Dependent Transition Probabilities

and battery shelf life. In fact, a BESS system based on lithium technology is known to work well
when charged between 20% and 80% of the charge level Zhang and Zhang (2021). This detailed
description of the system is based on a discrete-time Markov process with state-dependent transition
probabilities which is solved analytically using an isolation technique.

2. Modeling approach
This section aims to model a stochastic system consisting of a BESS, i.e. the buffer, which receives
discrete unit amounts of energy from an upstream charging process and releases discrete unit
amounts of energy to a downstream discharging process. Specifically,

• the energy flow is modeled as a discrete flow of unit amounts of energy (e.g., 1 unit amount of
energy can be equal to 1 Ah);

• the input probability that one unit amount of energy enters the BESS (from the upstream
process) depends on the charge level, i.e., the input probability is state-dependent;

• the output probability that one unit amount of energy leaves the BESS (to the downstream
process) depends on the charge level, i.e., the output probability is state-dependent;

• if the BESS is empty no output flow is allowed (the discharging process is starved);
• if the BESS is fully charged no input flow is allowed (the charging process is blocked);
• once the BESS gets fully charged, only the discharging flow is allowed until a certain threshold

level (called “restart level” in the sequel) is reached: the charge level can only decrease or remain
constant in this phase;

• once the restart level is reached, the charging process is allowed to restart: the charge level can
increase/decrease/remain constant according to the stochastic dynamics of the system.

Since charging flow is not always allowed, it is possible to identify two different system behaviors
that we call standard operation and energy drainage. In the standard operation behavior both the
charging and the discharging processes are allowed: the energy storage receives one unit amount
of energy in a time unit with probability p

(i)
1 , being i the current charge level; it releases one unit

amount of energy in a time unit with probability p
(i)
2 , being i the current charge level. In the energy

drainage behavior only the discharging process is allowed while the charging process is interrupted:
the charge level i decreases with probability p

(i)
2 or remains constant with probability (1-p(i)2 ). The

switch from the standard operation behavior to the energy drainage behavior occurs when the
BESS is fully charged (the charge level i is equal to the energy storage capacity N ); the switch back
from the energy drainage behavior to the standard operation behavior occurs when the charge level
reaches the restart level, denoted as L in the sequel. Hence, for charge levels below the restart level
(i < L) both flows are allowed (the only feasible behavior is the standard operation behavior); for
charge levels above the restart level (i≥L), we have to distinguish which of the two behaviors the
system is following.

We assume here that the system states coincide with the charge levels, by distinguishing between
the two behaviors when we are above the restart level L. Hence, it is convenient to partition the
state space into three partitions:

• Standard operation A partition: it consists of L states (0,1, . . . ,L− 1) and represents the sys-
tem below the restart level, where the only feasible behavior is the standard operation behavior;

• Standard operation B partition: it consists of N −L+ 1 states (L,L+ 1, . . . ,N − 1,N ) and
represents the system at the restart level or above the threshold level, given that the system is
following the standard operation behavior (both flows are allowed);
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• Energy drainage partition: it consists of N −L− 1 states (L+ 1, . . . ,N − 1) and represents
the system above the restart level given that the system is following the energy drainage behavior
(the charge level is decreasing after having reached the full state).

Given the three aforementioned state partitions, the so-called isolation technique can be applied
in order to simplify the mathematical treatment of the problem by treating each partition indepen-
dently, i.e. in “isolation”. This can be done by exploiting the proposition that, in steady state, the
probability of switching from partition Pj to partition Pk equals the probability of switching from
partition Pk to Pj . In other words, the probability of entering a partition must be equal to the prob-
ability of leaving that partition. Once each partition is solved in “isolation”, the original system
can be rebuilt by introducing the concept of “partition probability”, i.e., the probability for the sys-
tem being in one and only one of the three partitions at a given time instant. This approach leads
to the exact closed-form solution for the stationary probability distribution of the system states.
Thus, by applying the isolation technique, a set of analytical formulas can be derived to express the
probability that the BESS is at a given charge level.

3. Conclusion
This paper presented a stochastic model for BESS that captures the uncertainty in renewable gen-
eration and load demand. By solving the model analytically, we obtained a closed-form solution
for the stationary probability distribution of the state of the system. This detailed description of the
behavior of the energy storage system could serve as a foundation for optimization or as a bench-
mark for evaluating heuristic management strategies. Future research directions include extending
the model to multiple energy storage devices, incorporating battery degradation mechanisms, and
integrating the model with real-time energy management optimization frameworks.
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