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The digital twin prediction update synchronization problem determines whether or not to update the performance
prediction from the digital twin at each observation period depending on the observed state of the physical system.
Existing approaches provide solutions for the prediction update problem, but they can be applied only to simple
systems. In this study, we propose a sample path-based method to solve the prediction update problem for unreliable
production lines composed of multiple machines and finite buffers. The method estimates the performance measure
for each synchronization decision by partially observing the state of the system. An optimal state-dependent syn-
chronization policy is determined based on the observed state to balance the prediction bias and the synchronization
cost. The results show that partially observing the state of the bottleneck machine, rather than fully observing the
state of the system, is efficient for solving the problem without requiring a very long sample path.
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1. Introduction
Digital twins are considered important parts of smart manufacturing to monitor and control physical
systems more accurately and optimize manufacturing processes (Tao et al. 2019). The development
of IoT technologies makes data collection and communication more efficient, which enables digital
twins to capture the behavior of physical systems in increasing detail. A digital twin of a production
system involves a lot of variables that reflect the dynamics of the physical system, which increases
the difficulty of aligning the digital twin with its physical system. Synchronizing all variables of the
digital twin with the data from the physical system may take much time and resources (Modoni et al.
2019, Sargent 2013). Not synchronizing the digital twin with the actual state of the physical system
results in significant prediction errors that may cause production loss and management challenges
(Zipper and Diedrich 2019, Zipper 2021). Consequently, it is necessary to determine when and how
to synchronize the digital twin with its physical system in the most efficient way.

The optimal digital twin synchronization problem for production systems is defined as a stochas-
tic control problem, and the prediction update synchronization problem of an unreliable machine is
solved analytically in Tan and Matta (2024). The prediction update problem aims to decide whether
or not to update the prediction from the digital twin depending on the observed state of the phys-
ical system. A sample path-based method is introduced in Tan and Matta (2024) that can be used
to solve the problem. The method requires estimating the system performance for each synchro-
nization decision by observing the state of the system from the sample path. A state-dependent
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synchronization policy is determined based on the observed state of the system. In the case of a sin-
gle unreliable machine, the state of the system is fully observable and is either up or down. For an
unreliable production line, the state of the system is composed of states of all machines and buffers.
If we fully observe the state of the system, the available data in a given sample path that can be used
to estimate the performance prediction is limited. This will result in an inaccurate prediction when
the number of system states is large. In this study, partial observations of the production lines are
used to solve the problem. The main contribution of this work is a sample path-based method that
estimates the performance prediction and determines the optimal state-dependent policy based on
the partially observed state of the system.

2. Prediction update problem of unreliable production lines
A production line consisting of M unreliable machines and M − 1 finite buffers is considered
in this study. Machine mi, i = 1,2, . . . ,M follows the geometric reliability model. Buffer bi, i =
1,2, . . . ,M − 1 has a finite capacity denoted by Bi. The state of the system at time t is a set of
the states of all machines and buffers, denoted by yt = (α1

t , . . . , α
M
t , β1

t , . . . , β
M−1
t ). αi

t denotes the
state of machine mi, i= 1,2, . . . ,M at time t, which is 1 if machine mi is up and 0 if it is down.
βi
t denotes the buffer level of buffer bi at time t, βi

t ∈ {0,1, . . . ,Bi}. If not all machines and buffers
are observable or not all observations are used to determine the synchronization policy, yt includes
only the states of the machines and the buffers observed or used.

A digital twin, which uses a discrete event simulation model of the physical system, is adopted
to predict the throughput of the production line based on the available history. The throughput is
evaluated each ∆ cycles at times ∆,2∆, . . . ,N∆ until the end of the planning observation period.
The throughput within a given time interval [t, t+ τ) is the expected number of parts produced by
the production line during this interval denoted by E[THt,t+τ ].

Synchronizing the digital twin with the current observations allows obtaining a better prediction
of the throughput. This comes at a cost that includes retrieving the data from the production line,
executing a simulation experiment, and changing the production resources based on the updated
prediction. The synchronization decision at time n∆ is un =Hn, in which Hn is equal to 1 if the
digital twin is synchronized at time n∆ and 0 otherwise. The synchronization cost of decision un =
Hn at time n∆ is calculated with CDT(un) = cHHn, where cH is the cost for each synchronization.
We consider a state-dependent policy that the synchronization decision is taken depending on both
the evaluation period n and the observed state of the system yn. Not synchronizing the digital twin
results in inaccurate prediction, which incurs a cost of prediction bias. The bias cost at time n∆
denoted with CB(n,Sn,un) depends on the difference between the best estimation R∗

n(yn) with
the most recent observations yn and the estimation from the digital twin based on synchroniza-
tion decision at time n∆, RDT

n (Sn,Hn), i.e., CB(n,Sn,un) = cB(R
DT
n (Sn,Hn)−R∗

n(yn))
2. The

prediction update synchronization problem is to find a policy that determines when to update the
throughput prediction from the digital twin to minimize the expected total cost of prediction bias
and of synchronizations over N observation periods:

min
{Hn}

N∑
n=1

(cHHn+ cBE[(RDT
n (Sn,Hn)−R∗

n(yn))
2]). (1)

A sample path-based method is proposed to determine the optimal state-dependent policy for
the model described in Equation (1). The method estimates the throughput based on the observed
state of the last synchronization at time k∆, rDT

n,k (yk) = E[THn∆,(n+1)∆|yk]. A sample path with
L periods consists of the states of all machines and buffers during L∆ cycle times. The state of
the system at time t in the sample path is denoted with ot. If the state of the system at time l∆ in
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the sample path is equal to the state of the digital twin at the last synchronization at time k∆, i.e.,
ol∆ = yk, the throughput during the next period after n− k periods at time l∆ in the sample path
can be used to estimate the throughput at time n∆ based on state yk. Then rDT

n,k (yk) can be obtained
by using the average of the observations from the sample path. Accordingly, the estimate from the
digital twin based on the synchronization decision Hn at time n∆, RDT

n (Sn,Hn) is evaluated as

RDT
n (Sn,Hn) =

{
rDT
n,n(yn), Hn = 1

rDT
n,k (yk), Hn = 0

. (2)

The best estimate of the throughput at time n∆ is obtained by taking synchronization action with
Hn = 1, i.e., R∗

n(yn) = rDT
n,n(yn). Then, an optimal state-dependent policy is determined to solve

the problem formulated in Equation (1).

3. Numerical results and conclusions
To validate the performance of the sample path-based method, a simulation-based method is also
proposed in this work. The method differs from the sample path-based method in that R∗

n(yn) is
evaluated using simulation based on the current full observations of the system at time n∆. The
performance of both methods is compared in two test cases. Some results are shown in Figure 1.

The numerical results show that observing the bottleneck machine is more critical to determining
an optimal state-dependent policy than observing other machines in unreliable production lines. As
the length of the sample path increases, the average cost and the average number of synchroniza-
tions obtained using the sample path-based method almost stay stable. Longer sample paths are not
required for the cases analyzed. The simulation-based method yields policies with lower average
costs than the sample path-based method, but it takes much more time as the sample path becomes
longer. For more complex systems, the sample path-based method is more efficient to apply in
solving the prediction update synchronization problem. This will be studied in the future.
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Figure 1. Effect of the observed machine on the average cost obtained using both methods over five experiments
(cH = 20,L= 1000), and CPU time conducting one experiment using both methods for different values of L
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