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We are exploring active inference theory to develop intelligent decision-making models for optimizing energy-
efficient control in manufacturing systems. Inspired by insights from neuroscience, active inference provides a uni-
fied and probabilistic framework that integrates perception, learning, and action. It represents an emerging domain
in artificial intelligence, bridging generative models with decision-making processes. Utilizing a deep active infer-
ence agent, we investigate potential control strategies in parallel and identical machine workstations, with a specific
focus on promoting sustainability in manufacturing systems. We initially concentrate on stationary manufacturing
environments, and subsequently extend our analysis to non-stationary cases. We leverage advancements in previ-
ously developed active inference agents, along with existing reinforcement solutions, for the systems under study.
Our study compares the performance of the active inference-based method with reinforcement learning to evaluate
the advancement of the proposed methodology.
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1. Introduction
Energy-efficient control (EEC) is vital in the manufacturing sector due to its substantial impact
on global energy consumption. EEC strategies focus on minimizing energy usage by optimizing
machine states, particularly during idle periods (Loffredo et al. 2023). Traditional EEC methods
often require complete system knowledge, which is impractical in dynamic, real-world environ-
ments. Reinforcement learning has shown promising performance in optimizing manufacturing
processes without prior system knowledge (Loffredo et al. 2023) but struggles with rapid adaptation
to changing conditions. Active inference, based on the free energy principle (FEP), offers an alter-
native by unifying perception, learning, and decision-making under uncertainty through a Bayesian
framework (Friston 2010). It has been applied successfully in complex decision-making tasks in
fields such as robotics, enabling agents to navigate uncertain and dynamic scenarios (Pezzato et al.
2023). This research aims to build upon advancements in active inference-based decision-making
and apply it to EEC in manufacturing systems to demonstrate its potential.

2. Active Inference Agent
The active inference framework posits that organisms actively interact with their environment by
updating beliefs and actions based on sensory inputs to reduce surprise. Active inference agents
have an internal generative model parameterized by θ that interacts with the world similarly to a
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Partially Observable Markov Decision Process (POMDP). The core concept is FEP, which leads to
optimizing the model by minimizing Variational Free Energy (VFE) to reduce surprise, quantified
by − logPθ(ot), as follows (Fountas et al. 2020):

θ∗ = argmin
θ

(
EQϕ(st,at) [logQϕ(st, at)− logPθ(ot, st, at)]

)
. (1)

The agent’s actions aim to minimize Expected Free Energy (EFE or G), which is calculated during
planning by simulating future trajectories, π, up to a horizon τ ≥ t (Fountas et al. 2020):

G(π, τ) =EP (oτ |sτ ,θ)EQϕ(sτ ,θ|π) [logQϕ(sτ , θ|π)− logP (oτ , sτ , θ|π)] . (2)

EFE comprises three terms: Reward-like expected surprise, which pertains to how close the future
predictions are to the preference, state uncertainty, and model parameter uncertainty. The frame-
work (as depicted in Fig. 1) includes first optimizing model parameters θ to fit observations based
on VFE in Eq. 1 and then making decisions based on negative accumulated EFE in Eq. 2, incor-
porating a softmax function. The active inference agent architecture includes encoder, transition,
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Figure 1. Active Inference Framework Figure 2. Agent Architecture

and decoder modules (as depicted in Fig. 2), implemented with neural networks. This architec-
ture is probabilistic and similar to a variational autoencoder. Each module generates parameters of
pre-selected distributions given a sample. Calculating EFE for all possible trajectories is infeasi-
ble, so Fountas et al. (2020) proposed using Monte Carlo Tree Search (MCTS) coupled with an
inference action module (i.e., Qϕa

(at)). This module approximates the posterior distribution over
actions using the prior obtained from the MCTS. Building on the proposed agent by Fountas et al.
(2020), we explored various perspectives to design an agent for the EEC task in a manufacturing
system. However, there are peculiar features that challenge the original agent’s effectiveness. The
system is highly stochastic with delays in responding to agent policy, reflected in reward functions
that measure average performance (e.g., throughput) over a long horizon. This complicates learning
dynamics and planning strategy. Notably, the agent architecture (Fig. 2) predicts one step ahead,
often similar to the previous observation due to stochasticity. Therefore, we introduced modifica-
tions to tailor the architecture to our problem. To address the limitations of finite horizon EFE, we
propose a hybrid architecture that incorporates longer horizons via deep Q-learning. This approach
balances short-term EFE and long-term considerations using a hyperparameter, γ. Instead of using
the previous habitual structure within Monte Carlo Tree Search (MCTS) as described by Fountas
(2020), we trained Qϕa

(at) based on deep Q-learning. Additionally, we modified the transition
module to allow multiple steps, controlled by a hyperparameter (e.g., s = 90), enabling multi-step
predictions. Due to the computational expense of MCTS, we replaced it with repeated actions in
the transition and calculated EFE. This method assesses the impact of actions over a short period,
using repeated action simulations at every decision step.
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3. Results and Conclusion
Our experiments focused on controlling a real industrial workstation consisting of six parallel-
identical machines with finite upstream capacity buffer, as described in (Loffredo et al. 2023). For
the reward, similar to (Loffredo et al. 2023), we balanced (ϕ = 0.97) the ratio of throughput and
energy consumption against the ALL ON policy over the past 8 hours. We considered both 1-step
transitions and multi-step transitions, taking repeated actions during planning for each of the pos-
sible policies (i.e., determining how many machines to keep ON) to then calculate their EFE. We
tested the performance of our agents 50 times during different training iterations, each on inde-
pendent systems initialized with a random agent after warm-up. We evaluated the performance of
our agents using metrics such as test reward, throughput loss, total energy savings, and energy sav-
ings per part percentage compared to the ALL ON policy over an 8-hour window. Fig. 3 presents
the comparison for a single set of hyperparameters except s and γ, while Table 1 shows the per-
formance and average learned policy distribution for specific γ values. These results demonstrate
the efficacy of our introduced modifications. Hyperparameters significantly influence agent perfor-
mance, highlighting the importance of proper tuning for notable improvements and effective con-
trol. This underscores the potential of our proposed methodology for EEC applications. Importantly,
the framework and formalism of active inference agents exhibit notable promise for non-stationary
scenarios, where model-free agents may struggle to adapt swiftly. Future work will concentrate on
extending experiments and tailoring the methodology for such non-stationary scenarios.
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Figure 3. Results

Performance Metrics (%)
γ Reward TH Loss EN Saving EN/Part Saving

0.05 89.05±0.86 8.88±0.45 10.78±0.50 2.13±0.10
0.3 91.11±0.80 6.71±0.40 8.83±0.47 2.30±0.12
0.6 92.88±0.75 4.84±0.35 7.94±0.42 3.29±0.15

Policy Probabilities (An: Keeping n Machines ON)
γ P (A0) P (A1) P (A2) P (A3) P (A4) P (A5) P (A6)

0.05 0.00±0.00 0.00±0.00 0.07±0.00 0.18±0.01 0.22±0.01 0.27±0.02 0.26±0.01
0.3 0.00±0.00 0.00±0.00 0.05±0.00 0.13±0.01 0.17±0.01 0.38±0.02 0.27±0.01
0.6 0.00±0.00 0.00±0.00 0.03±0.00 0.07±0.01 0.10±0.01 0.57±0.02 0.23±0.01

Table 1. Performance and the Learned Policy for 90-Step Transition.
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