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Decomposition often is the only feasible and computationally efficient approach to compute steady-state perfor-
mance measures for queueing networks. However, performance results may be subject to severe approximation
errors since decomposition methods usually assume that the connecting stream can be approximated by renewal
processes. To overcome the renewal assumption, we present the semi-Markov arrivals decomposition approach
(SMAD). SMAD is a refined decomposition approach, where the connecting stream between the upstream and
the downstream station is described by a semi-Markov process. Using this modelling approach, state-dependent
inter-departure times from the upstream queue are preserved for downstream queuing analysis. Numerical results
demonstrate that the approach produces accurate results, compared to simulation.
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1. Introduction

We consider a discrete-time open tandem queue, where the upstream queue is of type M /G/1, and
the downstream queue is of type G/G/1. Decomposition is often the only feasible and compu-
tationally efficient approach to compute steady-state performance measures in this type of queu-
ing network. This approach partitions the network into individual queuing systems and analyses
them in isolation. It is based on the assumption that the output stream of the upstream M /G /1-
queue — which is fed into the downstream GI/G/1-queue — can be approximated by a renewal
process. However, it is well known that the departure process is a point process that is generally
difficult to deploy for queueing system analysis (Whitt 1981, 1982). Recently, it has been shown
that performance results may be subject to severe approximation errors when applying the renewal
decomposition method in this tandem queue (Jacobi and Furmans 2022). Thus, we outline a novel
approach to overcome the renewal assumption. We use a semi-Markov arrival process to model the
connecting stream between the upstream and the downstream queue.

2. Literature review

Decomposition approaches for open queueing networks generally rely on two basic assumptions
(Govil and Fu 1999): First, it is assumed that the individual queueing systems in the network can
be treated as being statistically independent. Second, it is assumed that the input to each queueing
system is a renewal process. In the continuous-time domain, this approach was first by applied by
Kuehn (1979) with modifications presented by Shanthikumar and Buzacott (1981), Whitt (1983),
and Reiman (1990). In the discrete-time domain, Hallinger and Rieger (1996) and Furmans (2004)
proposed refinements of these so-called parametric decomposition methods which allows for the
computation of the entire probability distributions of performance measures.
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A crucial problem for decomposition methods in the continuous-time domain is the computa-
tion of the variability measures for the internal flows, and for the departure stream. The Queueing
Network Analyzer (QNA) (Whitt 1983) employs two procedures (Whitt 1982) to approximate the
point departure processes by renewal processes, the stationary interval method and the asymptotic
method. Since neither of both methods yields promising results for a wide range of variability
parameters, Whitt (1983) introduces a hybrid procedure based on the work by Albin (1984a,b).
Finally, the variability of departure stream of the GI/G/1-queue is observed as an approximation
of the stationary interval method (Whitt 1984).

HaBlinger and Rieger (1996) present a refinement of the parametric decomposition approach for
the analysis of open queueing networks in the discrete-time domain. The discrete distribution of
superpositions of renewal processes is reversibly obtained by the distribution of the minimum of
the residual times of all superposed flows. A recursive method and a faster approach based on the
z-transform for the computation of the stochastic split of a renewal process are presented. Despite
discussing the renewal assumption and its implications, HaBlinger and Rieger (1996) state that
“further study is needed to construct [...] representations of non-renewal processes” in the discrete-
time domain that enable the computation of exact results.

3. Modelling approach

To overcome the renewal assumption for the analysis of tandem queues with Poisson arrivals and
general service times, we introduce the semi-Markov decomposition approach (SMAD). The nov-
elty of this decomposition method is that a semi-Markov process (SMP) is used to model the
connecting stream between the upstream M /G/1- and the downstream G/G/1-queue. Let the
stochastic process Z = {(Ng, Dy),k =1,2,...} denote a semi-Markov process where N € Ny is
the number of customers in the upstream M /G /1-queue immediately after the departure instance
of customer k, and Dy, € N is the inter-departure time between customers k and k + 1. Let the
probability function

f(t]i)=P(D=t|N=i) (D
denote the conditional probability that the inter-departure time is equal to ¢, given that the embedded
Markov chain of the semi-Markov process Zj, is in state Ny = i. The probability function f(¢|) is
equal to the service time, if the system is not empty immediately after the departure instance (that
is, ¢ > 0), and equal to the sum of the remaining inter-arrival time and the service time, if the system
is starving after departure instance k (that is, ¢ = 0). For downstream queueing analysis, we deploy
the discrete-time SM /G /1-queue, which has been introduced by Rieger and HaBlinger (1994).

4. Numerical results

We consider a tandem queue where the service time distributions are equal at the upstream and
the downstream station, P(B = 15) = P(B = 16) = 0.5, and the arrival stream is defined by A =
0.0613. The utilisation of the tandem queue is p = 0.950. We compute the probability distribution
of waiting time at the downstream queue, and compare the results to the waiting time distributions
obtained with the renewal decomposition approach and simulation. While the renewal decompo-
sition method computes an expected waiting time E(W) = 1.74, SMAD computes an expected
waiting time E'(WW) = 2.11, and simulation yields an expected waiting time E(W) = 2.10. We per-
formed a Chi-Square Goodness-of-Fit Test and found a significant relationship between the waiting
time distributions computed with SMAD, and simulation (X2(11; 612,682) = 5.69,p = .893).
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S. Conclusion

Decomposition approaches for open queueing networks approximate the interconnecting streams
as renewal processes. While this assumption allows for computationally efficient models, perfor-
mance results obtained at downstream queues might be prone to considerable approximation errors.
The novelty of SMAD is that a SMP is used to model the connecting stream between the upstream
M/G/1- and the downstream G/G/1-queue. Thus, SMAD captures the state-dependent inter-
departure times in the upstream M /G /1-queue departure process. While SMAD computes perfor-
mance results with great accuracy, state space explosion of the embedded Markov chain in the SMP
remains a concern. Thus, introducing a state space limit to increase the computationally efficiency
is a natural extension to the method.
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